825

 (
844
)CHAPTER 24: Exploring Text to Speech
 (
843
)CHAPTER 24: Exploring Text to Speech
[bookmark: _GoBack] (
24
)		 Chapter
[bookmark: _Toc81802382][bookmark: _Toc84669649][bookmark: _Toc84669707][bookmark: _Toc84670004][bookmark: _Toc85190066][bookmark: _Toc85536457][bookmark: _Toc86814928]Exploring Text to Speech
Android, versions 1.6 and later, features a multilingual speech synthesis engine called Pico. It allows any Android application to speak a string of text with an accent that matches the language. Text-to-speech software allows users to interact with applications without having to look at the screen. This can be extremely important for a mobile platform. How many people have accidentally walked into traffic when they were reading a text message? What if you could simply listen to your text messages instead? What if you could listen to a walking tour instead of reading while walking? There are countless applications where the inclusion of voice would improve an application’s usefulness. In this chapter, we’ll explore the TextToSpeech class of Android and learn what it takes to get our text spoken to us. We’ll also learn how to manage the locales, languages, and voices available.
[bookmark: _Toc248588305]The Basics of Text-to-Speech Capabilities in Android
Before we begin to integrate text to speech (TTS) into an application, you should listen to it in action. In the emulator or device (Android SDK 1.6 or above), go to the main Settings screen and choose “Voice input & output” and then “Text-to-speech settings” (or from Settings choose Text-to-speech or “Speech synthesis”, depending on which version of Android you’re running). Click the “Listen to an example” option, and you should hear the words, “This is an example of speech synthesis in English with Pico.” Notice the other options in this list (see Figure 24–1).

Figure 24–1. Settings screen for Text to Speech
You can change the language of the voice and the speech rate. The language option both translates the example words that are spoken and changes the accent of the voice doing the speaking, although the example is still “This is an example of speech synthesis” in whatever language you’ve set in the Language option. Be aware that the text-to-speech capability is really only the voice part. Translating text from one language to another is done via a separate component, such as Google Translate, which we covered in Chapter 11. Later, when we’re actually implementing TTS in our application, we’ll want to match the voice with the language, so the French text is spoken with a French voice. The speech rate value goes from “Very slow” to “Very fast”.
Pay careful attention to the option “Always use my settings”. If this is set by you or the user in system settings, your application may not behave as you expect, since the settings here could override what you want to do in your application.
With Android 2.2, we gained the ability to use TTS engines besides Pico (and thus, prior to Android 2.2, you would not see the Default Engine option in this Settings page). The choice provides flexibility, because Pico may not work well in all situations. Even with multiple TTS engines, there is only one TTS service on the device. The TTS service is shared across all activities on the device, so we must be aware that we may not be the only ones using TTS. Also, we cannot be sure when our text will be spoken or even if it will be spoken at all. However, the interface to the TTS service provides us with callbacks, so we have some idea of what is going on with the text we’ve sent to be spoken. The TTS service will keep track of which TTS engine we want and will use our desired TTS engine when doing things for us. The TTS service will use whatever TTS engine each calling activity wants, so other applications can use a different TTS engine than our application and we don’t need to worry about it.
Let’s explore what is happening when we play with these TTS settings. Behind the scenes, Android has fired up a text-to-speech service and Pico, a multilingual speech synthesis engine. The preferences activity we’re in has initialized the engine for our current language and speech rate. When we click “Listen to an example”, the preferences activity sends text to the service, and the engine speaks it to our audio output. Pico has broken down the text into pieces it knows how to say, and it has stitched those pieces of audio together in a way that sounds fairly natural. The logic inside the engine is actually much more complex than that, but for our purposes, we can pretend it’s magic. Fortunately for us, this magic takes up very little room in terms of disk space and memory, so Pico is an ideal addition to a phone.
In this example, we’re going to create an application that will read our typed text back to us. It is fairly simple, but it’s designed to show you how easy it can be to set up text to speech. To begin, create a new Android Project using the artifacts from Listing 24–1.
Note: We will give you a URL at the end of the chapter which you can use to download projects of this chapter. This will allow you to import these projects into your Eclipse directly.
Listing 24–1. XML and Java Code for Simple TTS Demo
<?xml version="1.0" encoding="utf-8"?>
<!-- This file is /res/layout/main.xml -->
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent">

 <EditText android:id="@+id/wordsToSpeak"
 android:hint="Type words to speak here"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"/>

 <Button android:id="@+id/speak"
 android:text="Speak"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:onClick=”doSpeak”
 android:enabled="false" />

</LinearLayout>

// This file is MainActivity.java
import android.app.Activity;
import android.content.Intent;
import android.os.Bundle;
import android.speech.tts.TextToSpeech;
import android.speech.tts.TextToSpeech.OnInitListener;
import android.util.Log;
import android.view.View;
import android.widget.Button;
import android.widget.EditText;

public class MainActivity extends Activity implements OnInitListener {
 private EditText words = null;
 private Button speakBtn = null;
 private static final int REQ_TTS_STATUS_CHECK = 0;
 private static final String TAG = "TTS Demo";
 private TextToSpeech mTts;

 /** Called when the activity is first created. */
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 words = (EditText)findViewById(R.id.wordsToSpeak);
 speakBtn = (Button)findViewById(R.id.speak);

 // Check to be sure that TTS exists and is okay to use
 Intent checkIntent = new Intent();
 checkIntent.setAction(TextToSpeech.Engine.ACTION_CHECK_TTS_DATA);
 startActivityForResult(checkIntent, REQ_TTS_STATUS_CHECK);
 }

 public void doSpeak(View view) {
 mTts.speak(words.getText().toString(),
 TextToSpeech.QUEUE_ADD, null);
 }

 protected void onActivityResult(int requestCode, int resultCode,
 Intent data) {
 if (requestCode == REQ_TTS_STATUS_CHECK) {
 switch (resultCode) {
 case TextToSpeech.Engine.CHECK_VOICE_DATA_PASS:
 // TTS is up and running
 mTts = new TextToSpeech(this, this);
 Log.v(TAG, "Pico is installed okay");
 break;
 case TextToSpeech.Engine.CHECK_VOICE_DATA_BAD_DATA:
 case TextToSpeech.Engine.CHECK_VOICE_DATA_MISSING_DATA:
 case TextToSpeech.Engine.CHECK_VOICE_DATA_MISSING_VOLUME:
 // missing data, install it
 Log.v(TAG, "Need language stuff: " + resultCode);
 Intent installIntent = new Intent();
 installIntent.setAction(
 TextToSpeech.Engine.ACTION_INSTALL_TTS_DATA);
 startActivity(installIntent);
 break;
 case TextToSpeech.Engine.CHECK_VOICE_DATA_FAIL:
 default:
 Log.e(TAG, "Got a failure. TTS not available");
 }
 }
 else {
 // Got something else
 }
 }

 public void onInit(int status) {
 // Now that the TTS engine is ready, we enable the button
 if(status == TextToSpeech.SUCCESS) {
 speakBtn.setEnabled(true);
 }
 }

 @Override
 public void onPause()
 {
 super.onPause();
 // if we're losing focus, stop talking
 if(mTts != null)
 mTts.stop();
 }

 @Override
 public void onDestroy()
 {
 super.onDestroy();
 mTts.shutdown();
 }
}
Our UI for this example is a simple EditText view to allow us to type in the words to be spoken, plus a button to initiate the speaking (see Figure 24–2). Our button has a doSpeak() method, which grabs the text string from the EditText view and queues it for the TTS service using speak() with QUEUE_ADD. Remember that the TTS service is being shared, so in this case, we queue up our text for speaking behind whatever else might be there (which is most likely nothing). The other option besides QUEUE_ADD is QUEUE_FLUSH, which will throw away the other text in the queue and immediately play ours instead. At the end of our onCreate() method, we initiate an Intent that requests the TTS engine to let us know if everything is OK for text to be spoken. Because we want the answer back, we use startActivityForResult() and pass a request code. We get the response in onActivityResult() where we look for CHECK_VOICE_DATA_PASS. Because the TTS service can return more than one type of resultCode meaning “OK,” we cannot just look for RESULT_OK. See the other values we can get by reviewing the switch statement.

Figure 24–2. User interface of TTS demonstration
If we get CHECK_VOICE_DATA_PASS back, we instantiate a TextToSpeech object. Notice that our MainActivity implements OnInitListener. This allows us to receive a callback when the TTS service interface has been created and is available, which we receive with the onInit() method. If we get SUCCESS inside of onInit(), we know we’re ready to speak text, and we enable our button in the UI. Two more things to note are the call to stop() in onPause(), and the call to shutdown() in onDestroy(). We call stop() because if something goes in front of our application, it’s lost focus and should stop talking. We don’t want to interrupt something audio-based in another activity that has jumped in front. We call shutdown() to notify Android that we’re through with the TTS engine and that the resources, if not needed by anyone else, are eligible to be released.
Go ahead and experiment with this example. Try different sentences or phrases. Now, give it a large block of text so you can hear the speech go on and on. Consider what would happen if our application were interrupted while the large block of text was being read, perhaps if some other application made a call to the TTS service with QUEUE_FLUSH, or the application simply lost focus. To test out this idea, go ahead and press the Home button while a large block of text is being spoken. Because of our call to stop() in onPause(), the speaking stops, even though our application is still running in the background. If our application regains focus, how can we know where we were? It would be nice if we had some way to know where we left off so we could begin speaking again, at least close to where we left off. There is a way, but it takes a bit of work.
[bookmark: _Toc248588306]Using Utterances to Keep Track of Our Speech
The TTS engine can invoke a callback in your application when it has completed speaking a piece of text, called an utterance in the TTS world. We set the callback using the setOnUtteranceCompletedListener() method on the TTS instance, mTts in our example. When calling speak(), we can add a name/value pair to tell the TTS engine to let us know when that utterance is finished being played. By sending unique utterance IDs to the TTS engine, we can keep track of which utterances have been spoken and which have not. If the application regains focus after an interruption, we could resume speaking with the next utterance after the last completed utterance. Building on our previous example, change the code as shown in Listing 24–2, or see project TTSDemo2 in the source code from the book’s web site.
Listing 24–2. Changes to MainActivity to Illustrate Utterance Tracking
// Add these imports
import java.util.HashMap;
import java.util.StringTokenizer;
import android.speech.tts.TextToSpeech.OnUtteranceCompletedListener;

// Change MainActivity
public class MainActivity extends Activity implements OnInitListener,
OnUtteranceCompletedListener {

 // Add these private fields
 private int uttCount = 0;
 private int lastUtterance = -1;
 private HashMap<String, String> params = new HashMap<String, String>();

 // Modify onInit
 public void onInit(int status) {
 // Now that the TTS engine is ready, we enable the button
 if(status == TextToSpeech.SUCCESS) {
 speakBtn.setEnabled(true);
 mTts.setOnUtteranceCompletedListener(this);
 }
 }

 // Add new method onUtteranceCompleted
 public void onUtteranceCompleted(String uttId) {
 Log.v(TAG, "Got completed message for uttId: " + uttId);
 lastUtterance = Integer.parseInt(uttId);
 }

 // Modify doSpeak
 public void doSpeak(View view) {
 StringTokenizer st = new StringTokenizer(words.getText().toString(),",.");
 while (st.hasMoreTokens()) {
 params.put(TextToSpeech.Engine.KEY_PARAM_UTTERANCE_ID,
 String.valueOf(uttCount++));
 mTts.speak(st.nextToken(), TextToSpeech.QUEUE_ADD, params);
 }
 }
The first thing we need to do is make sure our MainActivity also implements the OnUtteranceCompletedListener interface. This will allow us to get the callback from the TTS engine when the utterances finish being spoken. We also need to modify our button doSpeak() method to pass the extra information to associate an utterance ID to each piece of text we send. For this new version of our example, we’re going to break up our text into utterances using the comma and period characters as separators. We then loop through our utterances passing each with QUEUE_ADD and not QUEUE_FLUSH (we don’t want to interrupt ourselves!) and a unique utterance ID, which is a simple incrementing counter, converted to a String, of course. We can use any unique text for an utterance ID; since it’s a String, we’re not limited to numbers. In fact, we could use the string itself as the utterance ID, although if the strings get very long, we might not want to do that for performance reasons. We need to modify the onInit() method to register ourselves for receiving the utterance completed callbacks, and finally, we need to provide the callback method onUtteranceCompleted() for the TTS service to invoke when an utterance completes. For this example, we’re simply going to log a message to LogCat for each completed utterance.
When you run this new example, type some text that contains commas and periods, and click the Speak button. Watch the LogCat window as you listen to the voice reading your text. You will notice that the text is queued up immediately, and as each utterance completes, our callback is invoked, and a message is logged for each utterance. If you interrupt this example, for instance, by clicking Home while the text is being read, you will see that the voice and the callbacks stop. We now know what the last utterance was, and we can pick up where we left off later when we regain control.
[bookmark: _Toc248588307]Using Audio Files for Your Voice
The TTS engine provides a way to properly pronounce words or utterances that, by default, come out wrong. For example, if you type in “Don Quixote” as the text to be spoken, you will hear a pronunciation of the name that is not correct. To be fair, the TTS engine is able to make a good guess at how words should sound and cannot be expected to know every exception to all the rules. So how can this be fixed? One way is to record a snippet of audio to be played back instead of the default audio. To get the same voice as everything else, we want to use the TTS engine to make the sound and record the result, and then we tell the TTS engine to use our recorded sound in place of what it would normally do. The trick is to provide text that sounds like what we want. Let’s get started.
Create a new Android project in Eclipse. Use the XML from Listing 24–3 to create the main layout. We’re going to make this simpler by putting text directly into our layout file instead of using references to strings. Normally, you would want to use string resource IDs in your layout file. The layout will look like Figure 24–3.
Listing 24–3. A Layout XML file to Demonstrate Saved Audio for Text
<?xml version="1.0" encoding="utf-8"?>
<!-- This file is /res/layout/main.xml -->
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical" android:layout_width="fill_parent"
 android:layout_height="fill_parent">

 <EditText android:id="@+id/wordsToSpeak"
 android:text="Dohn Keyhotay"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"/>

 <Button android:id="@+id/speakBtn"
 android:text="Speak"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:onClick="doButton"
 android:enabled="false" />

 <TextView android:id="@+id/filenameLabel"
 android:text="Filename:"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"/>

 <EditText android:id="@+id/filename"
 android:text="/sdcard/donquixote.wav"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"/>

 <Button android:id="@+id/recordBtn"
 android:text="Record"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:enabled="false"
 android:onClick="doButton"/>

 <Button android:id="@+id/playBtn"
 android:text="Play"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:onClick="doButton"
 android:enabled="false" />

 <TextView android:id="@+id/useWithLabel"
 android:text="Use with:"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"/>

 <EditText android:id="@+id/realText"
 android:text="Don Quixote"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"/>

 <Button android:id="@+id/assocBtn"
 android:text="Associate"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:onClick="doButton"
 android:enabled="false" />

</LinearLayout>

Figure 24–3. User interface of TTS demonstration that associates a sound file with text
We need a field to hold the special text that we’ll record with the TTS engine into a sound file. We supply the file name in the layout as well. Finally, we need to associate our sound file to the actual string we want the sound file to play for.
Now, let’s look at the Java code for our MainActivity (see Listing 24–4). In the onCreate() method, we set up button click handlers for the Speak, Play, Record, and Associate buttons, and then we initiate the TTS engine using an intent. The rest of the code consists of callbacks to handle the result from the intent that checks for a properly set up TTS engine and handles the initialization result from the TTS engine and the normal callbacks for pausing and shutting down our activity.
Listing 24–4. Java Code to Demonstrate Saved Audio for Text
import java.io.File;
import java.util.ArrayList;

import android.app.Activity;
import android.content.Intent;
import android.media.MediaPlayer;
import android.os.Bundle;
import android.speech.tts.TextToSpeech;
import android.speech.tts.TextToSpeech.OnInitListener;
import android.util.Log;
import android.view.View;
import android.view.View.OnClickListener;
import android.widget.Button;
import android.widget.EditText;
import android.widget.Toast;

public class MainActivity extends Activity implements OnInitListener {
 private EditText words = null;
 private Button speakBtn = null;
 private EditText filename = null;
 private Button recordBtn = null;
 private Button playBtn = null;
 private EditText useWith = null;
 private Button assocBtn = null;
 private String soundFilename = null;
 private File soundFile = null;
 private static final int REQ_TTS_STATUS_CHECK = 0;
 private static final String TAG = "TTS Demo";
 private TextToSpeech mTts = null;
 private MediaPlayer player = null;

 /** Called when the activity is first created. */
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 words = (EditText)findViewById(R.id.wordsToSpeak);
 filename = (EditText)findViewById(R.id.filename);
 useWith = (EditText)findViewById(R.id.realText);

 speakBtn = (Button)findViewById(R.id.speakBtn);
 recordBtn = (Button)findViewById(R.id.recordBtn);
 playBtn = (Button)findViewById(R.id.playBtn);
 assocBtn = (Button)findViewById(R.id.assocBtn);

 // Check to be sure that TTS exists and is okay to use
 Intent checkIntent = new Intent();
 checkIntent.setAction(TextToSpeech.Engine.ACTION_CHECK_TTS_DATA);
 startActivityForResult(checkIntent, REQ_TTS_STATUS_CHECK);
 }

 public void doButton(View view) {
 switch(view.getId()) {
 case R.id.speakBtn:
 mTts.speak(words.getText().toString(),
 TextToSpeech.QUEUE_ADD, null);
 break;
 case R.id.recordBtn:
 soundFilename = filename.getText().toString();
 soundFile = new File(soundFilename);
 if (soundFile.exists())
 soundFile.delete();

 if(mTts.synthesizeToFile(words.getText().toString(),
 null, soundFilename) == TextToSpeech.SUCCESS) {
 Toast.makeText(getBaseContext(),
 "Sound file created",
 Toast.LENGTH_SHORT).show();
 playBtn.setEnabled(true);
 assocBtn.setEnabled(true);
 }
 else {
 Toast.makeText(getBaseContext(),
 "Oops! Sound file not created",
 Toast.LENGTH_SHORT).show();
 }
 break;
 case R.id.playBtn:
 try {
 player = new MediaPlayer();
 player.setDataSource(soundFilename);
 player.prepare();
 player.start();
 }
 catch(Exception e) {
 Toast.makeText(getBaseContext(),
 "Hmmmmm. Can't play file",
 Toast.LENGTH_SHORT).show();
 e.printStackTrace();
 }
 break;
 case R.id.assocBtn:
 mTts.addSpeech(useWith.getText().toString(), soundFilename);
 Toast.makeText(getBaseContext(),
 "Associated!",
 Toast.LENGTH_SHORT).show();
 break;
 }
 }

 protected void onActivityResult(int requestCode, int resultCode,
 Intent data) {
 if (requestCode == REQ_TTS_STATUS_CHECK) {
 switch (resultCode) {
 case TextToSpeech.Engine.CHECK_VOICE_DATA_PASS:
 // TTS is up and running
 mTts = new TextToSpeech(this, this);
 Log.v(TAG, "Pico is installed okay");
 ArrayList<String> available =
 data.getStringArrayListExtra("availableVoices");
 break;
 case TextToSpeech.Engine.CHECK_VOICE_DATA_BAD_DATA:
 case TextToSpeech.Engine.CHECK_VOICE_DATA_MISSING_DATA:
 case TextToSpeech.Engine.CHECK_VOICE_DATA_MISSING_VOLUME:
 // missing data, install it
 Log.v(TAG, "Need language stuff: " + resultCode);
 Intent installIntent = new Intent();
 installIntent.setAction(
 TextToSpeech.Engine.ACTION_INSTALL_TTS_DATA);
 startActivity(installIntent);
 break;
 case TextToSpeech.Engine.CHECK_VOICE_DATA_FAIL:
 default:
 Log.e(TAG, "Got a failure. TTS not available");
 }
 }
 else {
 // Got something else
 }
 }

 public void onInit(int status) {
 // Now that the TTS engine is ready, we enable buttons
 if(status == TextToSpeech.SUCCESS) {
 speakBtn.setEnabled(true);
 recordBtn.setEnabled(true);
 }
 }

 @Override
 public void onPause()
 {
 super.onPause();
 // if we're losing focus, stop playing
 if(player != null) {
 player.stop();
 }
 // if we're losing focus, stop talking
 if(mTts != null)
 mTts.stop();
 }

 @Override
 public void onDestroy()
 {
 super.onDestroy();
 if(player != null) {
 player.release();
 }
 if(mTts != null) {
 mTts.shutdown();
 }
 }
}
For this example to work, we need to add a permission in our AndroidManifest.xml file for android.permission.WRITE_EXTERNAL_STORAGE. When you run this example, you should see the UI as displayed in Figure 24–3.
We’re going to record some text that sounds like what we want “Don Quixote” to sound like, so we can’t use the real words. We need to make up text to get the sounds we want. Click the Speak button to hear how the fake words sound. Not too bad! Next, click Record to write the audio to a WAV file. When the recording is successful, the Play and Associate buttons get enabled. Click the Play button to hear the WAV file directly using a media player. If you like how this sounds, click the Associate button. This invokes the addSpeech() method on the TTS engine, which then ties our new sound file to the string in the “Use with” field. If this is successful, go back up to the top EditText view; type Don Quixote, and click Speak. Now it sounds like it’s supposed to.
Note that the synthesizeToFile() method only saves to the WAV file format, regardless of the file name extension, but you can associate other formatted sound files using addSpeech()—for example, MP3 files. The MP3 files will have to be created some way other than by using the synthesizeToFile() method of the TTS engine.
The uses of this method for speaking are very limited. In a scenario with unbounded words—that is, when you don’t know in advance which words will be presented for speech—it is impossible to have at the ready all of the audio files you would need to fix the words that do not get pronounced correctly by Pico. In scenarios with a bounded domain of words—for example, reading the weather forecast—you could go through an exercise of testing all of the words in your application to find those that don’t sound right and fixing them. Even in an unbounded situation, you could prepare some word sounds in advance so that critical words you expect will sound correct. You might, for instance, want to have a sound file at the ready for your company’s name or your own name!
There’s a dark side to the use of this method however: the text you pass to speak() must match exactly the text you used in the call to addSpeech(). Unfortunately, you cannot provide an audio file for a single word and then expect the TTS engine to use the audio file for that word when you pass that word as part of a sentence to speak(). To hear your audio file you must present the exact text that the audio file represents. Anything more or less causes Pico to kick in and do the best it can.
One way around this is to break up our text into words and pass each word separately to the TTS engine. While this could result in our audio file being played (of course, we’d need to record “Quixote” separately from “Don”), the overall result will be choppy speech, as if each word were its own sentence. In some applications, this might be acceptable. The ideal use case for audio files occurs when we need to speak predetermined canned words or phrases, where we know exactly in advance the text we’ll need to have spoken.
So what are we to do when we know we’ll get words in sentences that cannot be properly spoken by Pico? One method might be to scan our text for known “trouble” words and replace those words with “fake” words that we know Pico can speak properly. We don’t need to show the text to the user that we give to the speak() method. So perhaps we could replace “Quixote” in our text with “Keyhotay” before we call speak(). The outcome is that it sounds right and the user is none the wiser. In terms of resource usage, storing the fake string is much more efficient than storing an audio file, even though we’re still calling Pico. We had to call Pico for the rest of our text, so it’s not much of a loss at all. However, we don’t want to do too much second-guessing of Pico. That is, Pico has a lot of intelligence on how to pronounce things, and if we try to do Pico’s job for it, we could run into trouble quickly.
In our last example, we recorded a sound file for a piece of text, so that when the TTS engine reads it back to us later, it accesses the sound file instead of generating the speech using Pico. As you might expect, playing a small sound file takes fewer device resources than running a TTS engine and interfacing with it. Therefore, if you have a manageable set of words or phrases to provide sound for, you might want to create sound files in advance, even if the Pico engine pronounces them correctly. This will help your application run faster. If you have a small number of sound files, you will probably use less overall memory too. If you take this approach, you will want to use the following method call:
TextToSpeech.addSpeech(String text, String packagename, int soundFileResourceId)
This is a very simple way of adding sound files to the TTS engine. The text argument is the string to play the sound file for; packagename is the application package name where the resource file is stored, and soundFileResourceId is the resource ID of the sound file. Store your sound files under your application’s /res/raw directory. When your application starts up, add your prerecorded sound files to the TTS engine by referring to their resource ID (e.g., R.raw.quixote). Of course, you’ll need some sort of database, or a predefined list, to know which text each sound file is for. If you are internationalizing your application, you can store the alternate sound files under the appropriate /res/raw directory; for example /res/raw-fr for French sound files.
[bookmark: _Toc248588308]Advanced Features of the TTS Engine
Now that you’ve, learned the basics of TTS, let’s explore some advanced features of the Pico engine. We’ll start with setting audio streams, which help you direct the spoken voice to the proper audio output channel. Next, we’ll cover playing earcons (audible icons) and silence. Then, we’ll cover setting language options and finish with a few miscellaneous method calls.
[bookmark: _Toc248588309]Setting Audio Streams
Earlier, we used a params HashMap to pass extra arguments to the TTS engine. One of the arguments we can pass (KEY_PARAM_STREAM) tells the TTS engine which audio stream to use for the text we want to hear spoken. See Table 24–1 for a list of the available audio streams.
Table 24–1. Available Audio Streams
	Audio Stream
	Description

	STREAM_ALARM
	The audio stream for alarms

	STREAM_DTMF
	The audio stream for DTMF tones (i.e., phone button tones)

	STREAM_MUSIC
	The audio stream for music playback

	STREAM_NOTIFICATION
	The audio stream for notifications

	STREAM_RING
	The audio stream for the phone ring

	STREAM_SYSTEM
	The audio stream for system sounds

	STREAM_VOICE_CALL
	The audio stream for phone calls

If the text we want spoken is related to an alarm, we want to tell the TTS engine to play the audio over the audio stream for alarms. Therefore, we’d want to make a call like this prior to calling the speak() method:
params.put(TextToSpeech.Engine.KEY_PARAM_STREAM,
 String.valueOf(AudioManager.STREAM_ALARM));
Review Listing 24–2 to recall how we set up and passed a params HashMap to the speak() method call. You can put utterance IDs into the same params HashMap as the one you use to specify the audio stream.
[bookmark: _Toc248588310]Using Earcons
There is another type of sound that the TTS engine can play for us called an earcon. An earcon is like an audible icon. It’s not supposed to represent text but rather provide an audible cue to some sort of event or to the presence of something in the text other than words. An earcon could be a sound to indicate that we’re now reading bullet points from a presentation or that we’ve just flipped to the next page. Maybe your application is for a walking tour, and the earcon tells the listener to move on to the next location on the tour.
To set up an earcon for playback, you need to invoke the addEarcon() method, which takes two or three arguments, similar to addSpeech(). The first argument is the name of the earcon, similar to the text field of addSpeech(). Convention says that you should enclose your earcon name in square brackets (e.g., “[boing]”). In the two-argument case, the second argument is a file name string. In the three-argument case, the second argument is the package name, and the third argument is a resource ID that refers to an audio file most likely stored under /res/raw. To get an earcon played, use the playEarcon() method, which looks just like the speak() method with its three arguments. An example of using earcons is shown in Listing 24–5.
Listing 24–5: Sample Code Using Earcons
String turnPageEarcon = "[turnPage]";
mTts.addEarcon(turnPageEarcon, "com.androidbook.tts.demo",
 R.raw.turnpage);
mTts.playEarcon(turnPageEarcon, TextToSpeech.QUEUE_ADD, params);
We use earcons instead of simply playing audio files using a media player because of the queuing mechanism of the TTS engine. Instead of having to determine the opportune moment to play an audible cue and relying on callbacks to get the timing right, we can instead queue up our earcons among the text we send to the TTS engine. We then know that our earcons will be played at the appropriate time, and we can use the same pathway to get our sounds to the user, including the onUtteranceCompleted() callbacks to let us know where we are.
[bookmark: _Toc248588311]Playing Silence
The TTS engine has yet one more play method that we can use: playSilence(). This method also has three arguments like speak() and playEarcon(), where the second argument is the queue mode and the third is the optional params HashMap. The first argument to playSilence() is a long that represents the number of milliseconds to play silence for. You’d most likely use this method with the QUEUE_ADD mode to separate two different strings of text in time. That is, you could insert a period of silence between two strings of text without having to manage the wait time in your application. You’d simply call speak(), playSilence(), and speak() again to get the desired effect. Here is an example of using playSilence() to get a two-second delay:
mTts.playSilence(2000, TextToSpeech.QUEUE_ADD, params);
Choosing a Different Text-to-Speech Engine
To specify a particular TTS engine, the setEngineByPackageName() method can be used with an appropriate engine package name as the argument. For Pico, the package name is com.svox.pico. To get the user’s default TTS engine package name, use the getDefaultEngine() method. These two methods must not be called before reaching the onInit() method, as they will not work otherwise. These two methods are also not available prior to Android 2.2.
[bookmark: _Toc248588312]Using Language Methods
We haven’t yet addressed the question of language, so we’ll turn to that now. The TTS capability reads text using a voice that corresponds to the language the voice was created for, that is, the Italian voice is expecting to see text in the Italian language. The voice recognizes features of the text to pronounce it correctly. For this reason, it doesn’t make sense to use the wrong language voice with the text sent to the TTS engine. Speaking French text with an Italian voice is likely to cause problems; it is best to match up the locale of the text with the locale of the voice.
The TTS engine provides some methods for languages, to both find out what languages are available and set the language for speaking. The TTS engine has only a certain number of language packs available, although it will be able to reach out to the Android Market to get more if they are available. You saw some code for this in Listing 24–1 within the onActivityResult() callback, where an Intent was created to get a missing language. Of course, it is possible that the desired language pack has not been made available yet, but more and more will be available over time.
The TextToSpeech method to check on a language is isLanguageAvailable(Locale locale). Since locales can represent a country and a language, and sometimes a variant too, the answer back is not a simple true or false. The answer could be one of the following: TextToSpeech.LANG_COUNTRY_AVAILABLE, which means that both country and language are supported; TextToSpeech.LANG_AVAILABLE, which means that the language is supported but not the country; and TextToSpeech.LANG_NOT_SUPPORTED, which means that nothing is supported. If you get back TextToSpeech.LANG_MISSING_DATA, the language is supported, but the data files were not found by the TTS engine. Your application should direct the user to the Android Market, or another suitable source, to find the missing data files. For example, the French language might be supported, but not Canadian French. If that were the case and Locale.CANADA_FRENCH was passed to the TTS engine, the response would be TextToSpeech.LANG_AVAILABLE, not TextToSpeech.LANG_COUNTRY_AVAILABLE. The other possible return value is a special case where the locale might include a variant, in which case the response could be TextToSpeech.LANG_COUNTRY_VAR_AVAILABLE, which means everything is supported.
Using isLanguageAvailable() is a tedious way to determine all of the languages supported by the TTS engine. Fortunately, we can ask the TTS engine to tell us which languages are ready to be used. If you look carefully at Listing 24–4, in the onActivityResult() callback contained in the section where we receive the response from the intent, you’ll see that the data object contains a list of languages that are supported by the TTS engine. Look under the CHECK_VOICE_DATA_PASS case for the ArrayList variable called available. It has been set to an array of voice strings. The values will look something like eng-USA or fra-FRA. While locale strings are usually of the form ll_cc where ll is a two-character representation of a language and cc is a two-character representation of a country, these lll-ccc strings from the TTS engine can also be used to construct a locale object for use with the TTS engine. Unfortunately, we’ve received back an array of strings instead of locales, so we’ll have to do some parsing or mapping to figure out what voices are truly available for your desired TTS engine.
The method to set a language is setLanguage(Locale locale). This returns the same result codes as isLanguageAvailable(). If you wish to use this method, invoke it once the TTS engine has been initialized, that is, in the onInit() method or later. Otherwise, your language choice may not take effect. To get the current default locale of the device, use the Locale.getDefault() method, which will return a locale value such as en_US or the appropriate value for where you are. Use the getLanguage() method of the TextToSpeech class to find out the current locale of the TTS engine. As you did with setLanguage(), do not call getLanguage() before onInit(). Values from getLanguage() will look like eng_USA. Notice that now we’ve got an underscore instead of a hyphen between the language and the country. While Android appears to be forgiving when it comes to locale strings, it would be nice to see the API get more consistent in the future. It would have been quite acceptable for us to use something like this in our example to set the language for the TTS engine:
switch(mTts.setLanguage(Locale.getDefault())) {
case TextToSpeech.LANG_COUNTRY_AVAILABLE: …
At the beginning of this chapter, we pointed out the main text-to-speech setting of “Always use my settings”, which overrides application settings for language. As of Android 2.2, the method areDefaultsEnforced() of the TextToSpeech class will tell you whether or not the user has selected this option by returning true or false. Within your application, you can tell if your language choice would be overridden and take appropriate action as necessary.
Finally, to wrap up this discussion of TTS, we’ll cover a few other methods you can use. The setPitch(float pitch) method will change the voice to be higher or lower pitched, without changing the speed of the speaking. The normal value for pitch is 1.0. The lowest meaningful value appears to be 0.5 and the highest 2.0; you can set values lower and higher, but they don’t appear to change the pitch any more after crossing these thresholds. The same thresholds appear to hold for the setSpeechRate(float rate) method. That is, you pass this method a float argument with a value between 0.5 and 2.0, where 1.0 would be a normal speech rate. A number higher than 1.0 yields faster speech, and one lower than 1.0 yields slower speech. Another method you might want to use is isSpeaking(), which returns true or false to indicate whether or not the TTS engine is currently speaking anything (including silence from playSilence()). If you need to be notified when the TTS engine has completed saying everything from its queue, you could implement a BroadcastReceiver for the ACTION_TTS_QUEUE_PROCESSING_COMPLETED broadcast.
References
Here are some helpful references to topics you may wish to explore further:
http://www.androidbook.com/projects. Look here for a list of downloadable projects related to this book. For this chapter look for a zip file called ProAndroid3_Ch24_TextToSpeech.zip. This zip file contains all projects from this chapter, listed in separate root directories. There is also a README.TXT file that describes exactly how to import projects into Eclipse from one of these zip files.
http://groups.google.com/group/tts-for-android: This URL is for the Google group for discussing the TextToSpeech API.
https://groups.google.com/group/eyes-free: This URL is for the Eyes-Free Project Google Group, for discussing an open source project to provide accessibility capabilities for Android. Plus, there are links here to source code.
[bookmark: _Toc248588314]Summary
In this chapter, we’ve shown you how to get your Android application to talk to the user. Android has incorporated a very nice TTS engine to facilitate this functionality. For a developer, there’s not much to figure out. The Pico engine takes care of most of the work for us. When Pico runs into trouble, there are ways to get to the desired effect, as we’ve demonstrated. The advanced features make life pretty easy too. The thing to keep in mind when working with text-to-speech engines is that you must be a good mobile citizen: conserve resources, share the TTS engine responsibly, and use your voice appropriately.

 (
825
)
image3.png
\D hn Keyhotay

name:

/sdcard/donquixote.wav

Use with;

Don Quixote

image1.png
Listen to an example
Play a short demonstration of speech
synthesis.

Always use my settings .
Default settings below override
application settings

Default settings
Default Engine .
Sets the speech synthesis engine to
be used for spoken text

Install voice data

Speech rate
Speed at which the text Is spoken

Language ~

image2.png

